Pharmacoeconomic aspects of Ketosteril® treatment in stage 3-4 CKD patients

Gábor Zakar MD, Nephrology, Szent György Kórház, Székesfehérvár, Hungary;

Émese Tóth, Bence Nagy MD, Healthcare Consulting Ltd, Budapest, Hungary; Márta Molnár MD, Nephrology, Városi Kórház Szigetvár, Hungary; Ottó Árkossy MO, Nephrology, Szent János Kórház, Budapest, Hungary; Mária Harazsuti MD, Nephrology, FMC Dlúthy Center, Kecskemét, Hungary; Erzsébet Ládányi MD, Nephrology, FMK Nefrologiai Központ, Miskolc, Hungary; Attila Oroz, Nephrology, Bajcsy-Zsilinszky Kórház, Budapest, Hungary; László Papp, Nephrology, Síófok Város Kórháza, Síófok, Hungary; Tamás Szabó, Nephrology, Flór Ferenc Kórház, Kistarcsa, Hungary; István Tóth, Nephrology, Kaposi Mór Kórház, Kapuvár, Hungary

Summary

The authors analyzed the pharmacoeconomic impact of an early versus late Ketosteril treatment start in stage 3 (early) and stage 4 (late) of chronic kidney disease (CKD). CKD patient outcome data of two Hungarian studies and recent multinational resource utilisation quantitative survey were used for cost-efficacy modelling. Utility values of different CKD stages were taken from international publications. Deterministic modelling of the cost and utility at individual patient levels showed dominance of the "early arm" (early Ketosteril start). Distribution of the results in the scatter plot diagram confirmed the deterministic results in the probabilistic analysis (less costs, better efficacy) as well.

Introduction

There are numerous publications on various effects of Ketosteril® (a ketosterol-enriched oral preparation of Farnesol K3) both in predialysis and dialysis patients. No data exist however to the knowledge of the authors regarding its pharmacoeconomic impact on the treatment of predialysis patients. Our aim was to compare the cost-effectiveness of Ketosteril (low-energy low protein diet plus Ketosteril start) early (i.e. stage 3 (GFR 30-60 ml/min) of chronic kidney disease (CKD)) versus starting it "late" (in stage 4 (GFR 15-15 ml/min)) of CKD.

Materials and methods

A cost-effectiveness model has been developed to compare the relative costs and health benefits of the two alternatives, i.e. early and late Ket-therapy. Patient data of the Hungarian Ketosteril Study (1) and data of a recent publication (2) had been used for the cost-effectiveness analysis of the two treatment strategies (n=175). On the basis of the 5-Creatinin data we determined the average progression rate on different levels, extrapolating measured values to GFR levels. Multicenter (n=5) data of 80 non-Hungarian CKD patients were used for financial resource utilisation calculations, considering only direct medical costs (Table 1).

Table 1. The cost inputs of the model

<table>
<thead>
<tr>
<th>Cost categories</th>
<th>Value</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct medical cost with Ketosteril</td>
<td>3,155,51 €</td>
<td>196,51 €</td>
</tr>
<tr>
<td>Direct medical cost without Ketosteril</td>
<td>2,404,91 €</td>
<td>157,14 €</td>
</tr>
<tr>
<td>Dialysis cost</td>
<td>17,691,65 €</td>
<td>2,520,04 €</td>
</tr>
</tbody>
</table>

Table 2. The utility inputs of the model

<table>
<thead>
<tr>
<th>Stages</th>
<th>Utility value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFR > 30</td>
<td>0.76</td>
</tr>
<tr>
<td>GFR 30-15</td>
<td>0.95</td>
</tr>
<tr>
<td>GFR < 15</td>
<td>0.5642</td>
</tr>
</tbody>
</table>

Modelling techniques

The model can manage the input data in different levels:

- **Analysis with patient types:** We fitted a curve to each arm of data taken from Hungarian Ketosteril studies (1,2). Data were aggregated by type, depending on the starting level of Ketosteril therapy. To determine the equation for the GFR progression we fitted a mixed (fixed and random effect) regression.
- **Analysis with patient level data:** This model manages the input data on an individual level. Individual curves were fitted to all individual patient input data. Cost and utility were calculated on individual level for all patients during the modelling. Results of each arm were generated from average values of individual costs and utilities.
- **Simulation modelling:** During simulation modelling 1000 hypothetical patient curves were generated using Bayesian approach. It was our aim by this mean to assure the validity of our preliminary hypothesis regarding the expected time to dialysis. Patient characteristics had been allocated to profiles (specific patient’s age and starting GFR level). For purposes of probabilistic modelling hypothetical curves depend on a defined iteration number were chosen randomly. In the base case 100 iterations were modelled for 132 patient profiles each.

Results of the probabilistic analysis

The simulation included 13200 iterations (on both arms i.e. age groups x 2 x gender x 11 starting GFR levels x 100 iterations). The distribution of IFR values on the active arm in the probabilistic analysis showed that the majority of cases (10 942 cases, 82.8%) can be found in the dominant field.

Results

![Figure 1](https://example.com/figure1.png)

Conflicts of interest

Based on the data of our modelling, initiation of the Ketosteril in CKD stage 3 proved to be more advantageous both in terms of healthcare costs and effectiveness than starting the treatment in later stages (CKD 4) of the disease.

Declarations of financial interest:

- **KFR**: Incremental (cost) effectiveness ratio (ICER) represents the added value of new technologies on cost-effectiveness criteria. The difference in cost (incremental cost) is compared to the difference in outcomes (incremental effectiveness) by dividing the former by the latter. The ratio is interpretable as a % Benefit, which is equal to: ICER = (C2 – C1)/(E2 – E1) where C1 and C2 are the costs and E1 and E2 are the effects.

- **ICER**: A quality adjusted life year (QALY) is a universal Health outcome measure applicable to all individuals and all diseases, thereby enabling comparisons across diseases and across programmes. A QALY consists of a single measure, years or less at both quality of life (utility) and quality of life (utility).

References