pharmaceutical financing market

Published: 16 August 2016

••••• HEALTHWARE

News, current issues

Newsletter

- Legislations come into force between 01/07/2016 and 01/08/2016: Act XI of 1991 (01.07.2016); Act LXXXIII of 1997 (01.07.2016,23.07.2016); Act CLIV of 1997 (01.07.2016); Act XXV of 1998 (01.07.2016); Act XCV of 2005 (01.07.2016,17.07.2016); Act XCVII of 2006 (01.07.2016); Act XCVIII of 2006 (01.07.2016); Gov.Decree No.337/2008. (01.07.2016); Gov.Decree No.235/2009. (01.07.2016); Gov.Decree No.32/2010. (01.07.2016; 23.07.2016); E52CSM Decree No.32/2004. (01.08.2016); EUM Decree No.31/2010. (01.08.2016); NEFMI Decree No.11/2011. (11.07.2016)
- NEWS [HU]: "Recoverable debts of hospitals: no one is responsible for anything" link
- \bullet NEWS [EN]: "Spending on diabetes prescriptions doubles to £1 billion in ten years" ${{\rm link}\over{\rm link}}$
- NEWS [HU]: "Zoltán Ónodi-Szűcs: Health care reform is a near-death experience" link
- NEWS [EN]: "Future of drug pricing: paying for benefits not per pill" link
- STUDY: "Are the generic drugs interchangable?" <u>link</u> [HU] <u>publication</u> [EN]

NEWS [HU]: "Semmelweis University proposal for medial education development and Budapest's new healthcare system" link

Macro approach to financing healthcare and medicinal products

Balance of the Health Insurance Fund

					Billion HUF	
		2016 original	2016			
Health Security Fund	2015. I-XII. appropriation I-V	I-VI.	% of	% of		
			months	appropriation	last year	
Total of Budgetary Expenditures	1 955,3	1 963,7	989,4	100,8%	103,1%	
Curative preventive provisions	960,6	982,4	479,3	97,6%	102,1%	
Medicine subsidies	326,2	305,1	166,7	109,3%	105,2%	
Medicine subsidies (pharmacy)	310,6	231,4	159,8	138,1%	104,9%	
Total of Budgetary Revenues	1 925,4	1 963,7	1 014,3	103,3%	105,2%	
Social Security Contributions	1 223,4	1 417,0	731,7	103,3%	120,3%	
Contribution of Pharmaceutical Manufacturers and Wholesalers	65,3	58,0	37,3	128,8%	112,1%	
Balance	-29,9	0,0	25,0		561,4%	

Survey of references, meta – analysis

We collect the available information, evidence in related articles, directives, studies, research.

As the first step of systematic research of the scientific literature we define the relevant keywords.

Then we present the evidence charts, it is followed by organization and comparative analysis.

Meta – analysis

We are able to make an exact summary of the results with statistical methods, which is based on the systematic research of scientific literature that led to compiling the parameters of evidence charts.

Product offering

More details: link

In expenditures and revenues of 2016 budget, there is 2,77% increase compared to appropriation of 2015 and 0,43% increase compared to fulfilment of 2015. The central budget contribution is planned to be less with 26,5% than last year fulfilment, and this gap is filled with the 18,2% higher social security contribution (218 billion HUFs). The medicine subsidies plan is lower with 21,2 billion HUFs than last year expenses, but higher with 7 billion HUFs than the last year's original appropriation.

In the first six months of 2016 the Health Security Fund produced a 2,54% surplus due to the higher social security contributions (+23,2 billion HUFs; +3,3%) and the lower expenditures of curative preventive provisons (-11,93 billion HUFs; -2,4%). Medicine subsidies shows 9,3% surplus as a result of the medicines' higher turnover particularly that reimbursement based on special permission, and reimbursement of medicines without reference price group.

Changes to subsidised medicinal product categories

Changes in the public drug list	2016 Mar.	2016 Apr.	2016 May	2016 June	2016 July	2016 Aug.	2016
Number of new products	19	12	7	17	9	15	116
Number of new Al	1	0	0	0	2	0	8
Number of delisted products	9	36	19	1	11	31	152
Prices							
Decrease	5	59	1	0	43	2	144
Increase	0	3	0	0	5	0	8

Changes in the public drug list	2016 Mar.	2016 Apr.	2016 May	2016 June	2016 July	2016 Aug.	2016
Reimbursement							
Decrease	6	155	1	0	53	0	256
Increase	0	138	0	0	6	36	206
Co-payment							
Decrease	6	200	2	0	52	2	333
Increase	1	123	0	0	23	36	199
			Source: Hea	lthware an	alvsis basea	on OEP-PL	IPHA data

Dynamics of the sales/circulation of prescription-only-medicine

Million HUR comparing to same period last year 35 000 109% 109% 110% 110% 107% 106% 106% 104% 103% 104% 101% 25 000 20 000 15 000 10 000 5 000 2015M07 2015M08 2015M09 2015M10 2015M11 2015M12 2016M01 2016M02 2016M03 2016M04 2016M05 2016M06

Pharmacy reimbursement turnover

Prescription drugs' DOT turnover in 2015 was 1,04% higher than in 2014, so the trend of drug consumption is still increasing, but in slower rate than in 2014 (2,74%) or 2013 (2,23%); while the reimbursement turnover was higher with 7,44%. The average reimbursement per DOT was higher with 6,34% than the 2014's average. New innovative reimbursement decisions were made in 2014 and 2015 generated 3,1% and 0,65% of annual reimbursement turnover, while only 0,4% of annual DOT turnover. Drug sales in the first six months of 2016 was 1,06% higher than the same period last year, while the average reimbursement per DOT increased with 4,46%. The reimbursement turnover was higher with 5,57% for this period compared to last year.

HealthWare Consulting Ltd.

Source: Healthware analysis based on OEP's data

pharmaceutical market

Market data

Newsletter

larketing au	uthorisa	tion i	formation					
2015	EMA	OGYI	2016 - Q2	EMA	OGYI	June 2016	EMA	OG
New brands	91	190	New brands	20	57	New brands	4	1
New SKUs	1 081	2 2 2 6	New SKUs	161	542	New SKUs	56	18
New Skos	1001	2 220	New Skos	101	Source: H	lealthware analysis based on OG	YI's and EM	IA

TOP10 DISTRIBUTOR by all reimbursement paid in June 2016

		TOP 10 - DISTRIBUTOR	Reimbursement
		Novartis Hungária Kft.	2 691 472 341 HUF
		SANOFI-AVENTIS Zrt.	1 872 613 105 HUF
	13 402 870 417 HUF	EGIS Gyógyszergyár Zrt.	1 420 306 511 HUF
		Richter Gedeon Vegyészeti Gyár NyRt.	1 332 149 448 HUF
346 512		TEVA Gyógyszergyár Zrt.	1 182 733 657 HUF
HUF		Pfizer Kft.	1 145 804 748 HUF
		Novo Nordisk Hungária Kft.	1 067 309 402 HUF
		Sandoz Hungária Kereskedelmi Kft.	944 755 859 HUF
		Lilly Hungaria Kft.	878 063 835 HUF
		Janssen-Cilag Gyógyszerkereskedelmi Marketing Szolgáltató Ki	867 661 513 HUF
		Source: Healthware analysis based on the sales turnover that pharmacie	s produced from POM

TOP10 BRAND by all reimbursement paid in June 2016

			TOP 10 - BRAND	Distributor	Reimbursement
			CLEXANE	SANOFI-AVENTIS Zrt.	633 942 533 HUF
			GLIVEC	Novartis Hungária Kft.	558 875 565 HUF
			XEPLION	Janssen-Cilag Gyógyszerkereskedelmi Market	469 275 289 HUF
			SPIRIVA	Boehringer Ingelheim Pharma Gesellschaft m.	329 000 804 HUF
	24 266 014 017 🧹	3 738 202 911	TECFIDERA	Biogen Idec Hungary Kft.	310 036 961 HUF
HUF	HUF	HUF	LANTUS	SANOFI-AVENTIS Zrt.	307 939 118 HUF
			TASIGNA	Novartis Hungária Kft.	307 425 256 HUF
			HUMULIN	Lilly Hungaria Kft.	294 450 085 HUF
			IMBRUVICA	JANSSEN-CILAG INTERNATIONAL NV	274 701 552 HUF
			LEVEMIR	Novo Nordisk Hungária Kft.	252 555 748 HUF
			Source: Healt	hware analysis based on the sales turnover that pharmacie	s produced from POM

TOP10 ATC by all reimbursement paid in June 2016

	TOP 10 - ATC	International non-proprietary name (INN)	Reimbursement
	B01AB05	enoxaparin	633 942 533 HUF
	V06D	other nutrients	598 148 762 HUF
	L01XE01	imatinib	558 875 565 HUF
	N05AX13	paliperidone	540 836 335 HUF
487 534 782 4 516 682 146	C10AA07	rosuvastatin	446 050 725 HUF
HUF HUF	A10AE04	insulin glargine	419 469 332 HUF
	A10AB01	insulin (human)	350 559 704 HUF
	C09BA04	perindopril and diuretics	329 761 424 HUF
	R03BB04	tiotropium bromide	329 000 804 HUF
	N07XX09	dimethyl fumarate	310 036 961 HUF
	Source: He	ealthware analysis based on the sales turnover that pharm	acies produced from PON

Table: Data of Patients with "A" Therapy

Target

DEATH

A THERAPY

CENSORED

D THERAPY

B THERAPY

CENSORED

CENSORED

DFATH

DEATH

lumher

4 7 4 4

1 4 9 8

1 950

650

146

100 46

350

300

Data Visualization with Sankey Diagram — Case study

Introduction

In the course of biostatistical and health-economic analyses it is often necessary to analyze patient pathways, a type of time series data. During the analysis of such data, the focus of the analysis is often the order of the events and the elapsed time between them. Given that a single patient's pathway can contain numerous events, the analysis of a dataset of hundreds or thousands of patients can be cumbersome. In these cases, the representation of data in a graph can be useful not only to see the connections between individual events, but for the clear and easy-to-understand visualization of other important attributes. One of these graphing methods which specifically focuses on the order of events is the Sankey diagram.

Interpretation of the Sankey Diagram

A Sankey diagram, like any graph, constitutes of nodes and links. Nodes represent the relevant events of the study, while the links represent the predefined connection between these events. The Sankey diagram is a type of the so-called flow charts. In these diagrams the thickness of the links is determined by the amount of flow in the link. For example, the Sankey diagram can be used for the analysis of therapy switches, as can be seen in the attached plot. In this case, the nodes represent therapies and the links between them provide information about the connections and patient number between the therapies. The thickness of the links can represent various quantities such as patient number, percentage or any other available data. Sankey diagrams can help with the segmentation of patient pathways

Source

START

A THERAPY

A THERAPY

A THERAPY

A THERAPY

R THERAPY

B THERAPY

D THERAPY

D THERAPY

and thus with the definition of therapy lines. Sankey diagrams are based on aggregated datasets.

A part of the dataset used to create the example diagram can be seen in the attachment.

It is possible that we are interested in the simultaneous visualization of multiple attributes. Say, we would like to plot the number of patients switching from one therapy to another and the average elapsed time between the two therapies at the same time. This can be accomplished by defining the link thickness by the number of patients and adjusting the colour of the links according to the change in the elapsed time. Nodes can be colored in a similar way.

It is possible to save the diagram in HTML format. In this format the order of events within a column can freely be interchanged. This format also allows the user to see the exact number of units – in this case the patient number – that determines the link thickness. Since only a static picture can be attached to this page, we demonstrate this function in the link connecting the start and the therapy A.

Average number of **medical sales reps**; 06/2016

Drug reimbursement by legal title; 06/2016

Source: Healthware analysis based on the sales

TOP10 ATC by number of patients in June 2016

TOP 10 - ATC	International non-proprietary name (INN)	Patients
B01AC06	acetylsalicylic acid	355 711
C09BA04	perindopril and diuretics	299 911
C08CA01	amlodipine	262 065
C07AB12	nebivolol	255 833
C10AA07	rosuvastatin	229 141
C10AA05	atorvastatin	223 850
A02BC02	pantoprazole	216 593
M04AA01	allopurinol	214 137
C09AA04	perindopril	182 830
C07AB07	bisoprolol	176 434
Source: Heal	thware analysis based on the sales turnover that pharmacies n	roduced from POM

Interpretation of the Example Diagram

The attached Sankey diagram visualizes therapy switches where the thicknesses of the links are determined by patient numbers. The diagram also contains a start state and two so-called absorbing states: death and censoring. Absorbing states are states where the patient pathway ends without any possible continuation. The displays of the starting and absorbing states are both optional. Leaving these out of the plot can lead to unfinished flows. Say, we display the death event, but we leave out the censoring. In this case one will be able to see that not all patient pathways end in an absorbing state, thus not all patients die.

The advantages of the Sankey diagrams are quite apparent: therapies with the highest patient numbers, connections, and ratios of switching patient numbers can easily be seen. It can be easily determined that the therapy with most patients was therapy A, while the one with the lowest patient number is therapy B. It can also be seen that most patient pathways end with censoring. The distance between a therapy and the absorbing states is determined by the number of additional therapies the patients go through following the therapy in question before reaching the end of the flow. For example the diagram shows that there are patients who switch therapies from therapies A and C.

We demonstrate the usefulness of link coloring by setting blue all links of patients whose patient pathway goes through therapy A. This way one can see, say, the number of patients who started with therapy A, continued with therapy D and then died.

In conclusion, the Sankey diagram is an easy-to-interpret tool in both the preparatory phase of a study and during the display of the results.